Determination of total water hardness via chelatometry

Task:

Determine in mmol.l⁻¹ the total water hardness; determine in mg.l⁻¹ the calcium and magnesium content in drinking water.

Principle:

The total water hardness is caused not only by Ca^{2+} a Mg^{2+} salts contained in water, but by Sr^{2+} and Ba^{2+} as well. Their presence depends on the amount of dissolved CO₂, which balances the reaction:

 $CaCO_3 + CO_2 + H_2O \iff Ca^{2+} + 2HCO_3^{-}$

Water hardness is determined via direct titration of volumetric solution chelaton 3 in the dampening ammonia solution using the Eriochromium black T indicator.

Reaction equation:

 $\begin{array}{c} Ca^{2+} + H_2Y^{2-} & \xrightarrow{\ ECHCT} & CaY^{2-} + 2H^+ \\ Mg^{2+} + H_2Y^{2-} & \xrightarrow{\ ECHCT} & MgY^{2-} + 2H^+ \end{array}$

If we want to determine Ca^{2+} only, we titrate it using murexid or fluorexon indicator at 12 - 13 pH. At this pH, the concurrently present Mg^{2+} ions condense as $Mg(OH)_2$ (\downarrow white) so only Ca^{2+} is titrated. We calculate the amount of Mg^{2+} in the sample according to the difference in volume of a volumetric solution / murexid.

Tools:

Titration flasks, burette, pipette (100 ml), graduated cylinder (5 ml).

Chemicals:

Chelaton 3 o c= 0.05 mol.l⁻¹, Eriochromium black T, dampening ammonia solution.

Sample:

Drinking water.

Procedure:

- 1) Prepare 250 ml of chelaton 3 volumetric solution with the concentration of 0.05 mol.1⁻¹.
- 2) Calculate the real concentration of chelaton 3 from its real weight.
- 3) Pipette 100 ml of tested water into a titration flask.
- 4) Add 5 ml of dampening ammonia solution by a graduated cylinder.
- 5) Add a small amount of Eriochromium black T and titrate from wine red to blue colouring which lasts for 1 min.
- 6) Determine 3x. Calculate water hardness in mmol. 1^{-1} .

Assessment:

Calculation:Weight of chelaton 3:m(g)=c * V * M(the volume in litres)

The real concentration of chelaton 3: c (real) = c (theoretical) * m (real) / m (theoretical) Calculation of total water hardness c in mmol. l^{-1} :

$$c = \frac{c_{CH3.}V_{CH3}}{V_{water}}.1000$$

where: c_{CH3} – concentration of chelaton 3 in mol.1⁻¹

 V_{CH3} – consumption of chelaton 3 in ml

V_{water} – volume of water sample in ml

In the past, water hardness was determined in German degrees ⁰N, when: $1^{0}N = 1 \text{ mg CaO} / 100 \text{ ml water and } 1 \text{ mmol.l}^{-1} = 5.6^{0}N$

Water hardness	Water hardness in mmol.l ⁻¹	Water hardness in ⁰ N
Very soft	0 - 0.7	0 - 4
Soft	0.7 - 1.4	4 - 8
Medium soft	1.4 - 2.1	8 - 12
Quite hard	2.1 - 3.2	12 - 18
Hard	3.2 - 5.4	18 - 30
Very hard	> 5.4	> 30

Tab. 1: Types of water according to hardness

Ministry of Health Regulation 252/2004 suggests drinking water hardness 2-3.5 mmol.l⁻¹ (11.2 $^{0}N - 19.6^{0}N$).

Determination of Ca²⁺

Principle:

Calcium is a natural part of water contributing to its hardness. Ca^{2+} is titrated by volumetric solution chelaton 3 using murexid indicator in the diluted NaOH at pH 12.

 $Ca^{2+} + H_2Y^{2-} \xrightarrow{murexid} CaY^{2-} + 2H^+$

Tools:

Titration flasks, pipettes (100 ml, 2 ml), graduated cylinder (100 ml), burette.

Chemicals:

NaOH (c= $0.1 \text{ mol.}l^{-1}$), HCl (c= $0.1 \text{ mol.}l^{-1}$), NaOH (c= $5 \text{ mol.}l^{-1}$), murexid, chelaton 3 (c= $0.05 \text{ mol.}l^{-1}$).

Procedure:

Pipette 100 ml of water sample into a titration flask. Add 2 ml 5 M NaOH, murexid indicator and titrate by 0.05 M chelaton 3 to blue-violet colouring.

Assessment:

Calculate the amount of Ca^{2+} in mol.1⁻¹ or in mg.1⁻¹.

Determination of Mg²⁺

Magnesium causes water hardness. We determine it via complexometry or by calculating the difference of consumption using Eriochromium black T and murexid.

<u>Assessment:</u> V (Mg²⁺) = V (water hardness) – V(Ca²⁺)